MODEL 99539

CURRENT PREAMPLIFIER

Phone: (607)539-1108 Email: info@dlinstruments.com www.dlinstruments.com

Instruments

The Model 99539 is a modular, multi (up to eight)-channel current preamplifier with parallel, logic level, gain control input. It consists of circuit boards which plug into a 3 $\frac{1}{2}$ " high by 19" wide rack chassis.

Each board comprises a single preamplifier channel. Each board includes a front panel with controls to manually override the remote gain control inputs. The front panel also contains indication light emitting diodes. The 19" rack chassis accommodates eight preamplifier channels.

It also has a ninth slot for a user-provided microprocessor which provides gain control outputs, digitizes the preamplifier outputs and communicates via the VME

bus to other system components. The 19" rack chassis incorporates a regulated DC supply which provides power to all nine modules and detector bias potentials.

Preamplifier Module Specifications

Gain

Programmable from 10^4 V/A to 10^{10} V/A in decade steps.

Bandwidth

Gain (A/V)	Input Spectral Density	Output Broadband
. ,		_
G	A RMS/ $\sqrt{(Hz)}$ @ 1kHz Max.	dc-1kHz
	$L_{\rm f}$	Volts RMS, typ. E _f
		Open Circuit
104	$4 \ge 10^{-12}$	1 x 10 ⁻⁶
10 ⁵	6 x 10 ⁻¹³	1.5 x 10 ⁻⁶
10 ⁶	$1.5 \ge 10^{-13}$	4 x 10 ⁻⁶
107	$5 \ge 10^{-14}$	12 x 10 ⁻⁶
10 ⁸	$2 \ge 10^{-14}$	50 x 10 ⁻⁶
109	$2 \ge 10^{-14}$	500x 10 ⁻⁶
10^{10}	$2 \ge 10^{-14}$	$5 \ge 10^{-3}$

-3dB frequency shall be 300 Hz nominal 10^4 to 10^{10} .

Input Offset Current

20pA typical @ 25° C. $10^{8} - 10^{10}$ only $- (20)(10^{-12})(10^{10}) = 20 \times 10^{-2} = 200$ mV 200pA typical., $10^{4} - 10^{7}$. Note: This parameter is dependent on the ambient humidity and temperature. If lower values are required it is important to reduce both the temperature and humidity.

Power Requirements

+15V \pm 0.6V @ 15mA maximum -15V \pm 0.6V @ 15mA maximum Analog Ground

 $+5V \pm 0.2V$ @ 15mA maximum Digital Ground

Controls

Two miniature bat handled switches

a. Remote/Local Mode Switch

Module operates under front panel control in LOCAL position and under microprocessor control in REMOTE position

b. GAIN UP/DOWN Switch

Center off, spring loaded action. Sequences through the seven gain steps on each successive up or down actuation.

D: 0	D: 0	D: 1	
Bit 3	Bit 2	Bit 1	Command
0	0	0	10^4 V/A
0	0	1	10^{5}V/A
0	1	0	10^{6}V/A
0	1	1	10^7 V/A
1	0	0	10 ⁸ V/A
1	0	1	10 ⁹ V/A
1	1	0	10 ¹⁰ V/A
1	1	1	Calibration
MSB		LSB	

Control Coding

Gain Indicator

Eight light emitting diodes, one for each gain step.

Status Output

Single logic line to indicate LOCAL or REMOTE mode. This allows the microcontroller to know if any module is unavailable for control due to being set manually to LOCAL mode. All lines are tied together and will only indicate "high" when all switches are in the "Remote" position.

Logic Inputs and Outputs

5 Volt, positive = true = 1, TTL compatible logic Logic 0 < 0.8V; Logic 1 > 2.0V for inputs Logic 0 < 0.4V; Logic 1 > 2.4V for outputs Positive logic; true = 1 = high MOSFET Input Impedance Current drive (output)

Pin Assignments

	-	10	
Shield Ground	I	13	Analog Ground
Signal Input	2	14	Analog Ground
Analog Ground	3	15	-15V
-15V	4	16	N/C
N/C	5	17	+15V
+15V	6	18	N/C
N/C	7	19	Shield Ground
Signal Output	8	20	N/C
GAIN Bit 1	9	21	N/C
Remote/Local	10	22	N/C
GAIN Bit 2	11	23	N/C
GAIN Enable	12	24	Gain Bit 3

The following are pins are on the rear connector of the preamplifier board

Gain Switching Time

10 microseconds, maximum except $10^7 - 10^8$ transition, 1msec maximum

Output Polarity

Positive conventional current into input (electron loss by detector) results in positive going voltage output.

Input Protection

Anti-parallel diodes across input

Analog Output Impedance

50 ohms

Accuracy

 $\pm 1\%$

Output Range

 $\pm 10 V dc$

Input Overload Detection

None

Input/Output Signal

Single ended. BNC shells connected to analog ground on the corresponding preamplifier P. C. Board.

Construction

Modular P.C. Board with front panel and rear plug. Connector mates with chassis socket to receive power, signal and control wiring. Module is removable with the front of the 19" rack chassis.

Power Supply Specifications

Analog Supply

±15V @ 250mA, ±0.6V; 1mV ripple/noise Analog Ground

Digital Supply

+5V @ 1A; ±0.2V; 1mV ripple/noise Digital Ground

Bias Supplies

51 Volt bias # 1 @ 1mA; ±3V; 20mV ripple/noise Bias Ground # 1, floating

51 Volt bias # 2 @ 1mA; ±3V; 20mV ripple/noise Bias Ground # 2, floating

Grounding

Analog ground and digital ground tie together at the power supply via a removable jumper wire (to allow the tie point to be moved elsewhere if need be; for example, to the site of the microprocessor board A/D converter). This ground optionally may be tied to the chassis safety ground. Chassis ground connects to ac line safety ground (third wire in power cord). The two 50V bias supplies are powered from separate transformer secondary windings. These supplies float separately from one another, with their return conductors isolated from other grounds. The shield grounds connect to analog ground at the individual channel modules.

AC Input

105 or 135 Vac; 50-60Hz; single phase, 50VA, maximum. Connection via detachable power cord and EMI/fuse module on chassis rear panel.

Front Panel

Contains the power on/off switch and pilot light.

Construction

Non-modular. The power supply is not removable from the front of the chassis and does not employ a plug – in connector. DC outputs are distributed via cables soldered to the regulator P.C. Board.

Chassis Specifications

Construction

19" side x 3 ¹/₂" high x 16" deep, rack mountable with slides (Optional).

Rear Panel

Contains 117Vac input module, 8 BNC analog inputs and 8 BNC analog outputs. All BNC connectors have their shields isolated from the chassis (however, they are connected if Analog/Digital ground are connected to chassis).

Order of Components

Viewed from the front:

Power Supply leftmost Then, from left – to – right, preamplifier channels 1 through 8 in ascending order. Empty slot next (for microprocessor)

Power Supply Distribution

 $\pm 15V$, analog ground; $\pm 5V$, digital ground bussed to analog channels 1-8. Separate wiring from power supply for these supply lines to the microprocessor board connector.

VME Bus Connection

User shall provide microprocessor board, A/D, etc. Provision is made for $\pm 15V$, $\pm 5V$ power, card guides and rear "D" connector.

Temperature Range, Operating

0°C to 45°C, Specifications apply 25°C ±5°C

Slot Size for Modules

Panel width:	1.4 inches
Board height:	2.20 inches overall
	2.00 inches subtracting card guide depth
Circuit Area	10.5 inches along length
	$2.0 \ge 10.50 = 21$ square inches

	Designator	Function	Connector(J37)
PREAMP	R/L	Remote/Local	6
CONTROL	GEN0	Gain Enable, CH-1	20
GROUP	GEN1	Gain Enable, CH-2	1
	GEN2	Gain Enable, CH-3	21
	GEN3	Gain Enable, CH-4	2
	GEN4	Gain Enable, CH-5	22
	GEN5	Gain Enable, CH-6	3
	GEN6	Gain Enable, CH-7	23
	GEN7	Gain Enable, CH-8	4
	G1	Gain Bit 1	24
	G2	Gain Bit 2	5
	G3	Gain Bit 3	25
POWER	+15	Analog Supply (+)	26
	AGND	Analog Supply Return	7
	-5	Analog Supply (-)	27
	+7.5	Digital Supply (+)	8
	+7.5 RTN	Digital Supply Return	28
AUX.GROUND	AGND	Analog Ground	29
	DGND	Digital Ground	10
	DGND	Digital Ground	30
	DGND	Digital Ground	11
	DGND	Digital Ground	31
NOT USED			37,18,19,17,
			34,35,9,12,
			13-16,32,33,36

System Rear Panel Connector Assignments

Summary

Gain	Program	Programmable from 10^4 V/A to 10^{10} V/A in decade steps		
Bandwidth	-3dB free	-3dB frequency shall be 300 Hz nominal 10^4 to 10^{10}		
	Gain	Input Spectral Density	Output Broadband DC – 1kHz	
	A/V	$A RMS / \sqrt{Hz}$ at 1kHz, Max	Volts RMS, typ.	
	G	L_{f}	E _f Open Circuit	
	10^4	4×10^{-12}	1 x 10 ⁻⁶	
	10^{5}	$6 \ge 10^{-13}$	1.5×10^{-6}	
	10^{6}_{7}	1.5×10^{-13}	4×10^{-6}	
		10^7 5 x 10^{-14} 12 x 10^{-6}		
		10^8 2 x 10^{-14} 50 x 10^{-6}		
	10^{9}	2×10^{-14}	500×10^{-6}	
	10^{10}	$2 \ge 10^{-14}$	5×10^{-3}	
Input Offset Current	20pA Ty	p. @ 25° C. $10^8 - 10^{10}$ only – (20)(10)	0^{-12})(10 ¹⁰) =	
	20×10^{-2}	200mV 200pA typ., $10^{-4} - 10^{7}$		
Power Requirements	Analog C	Ground $+15V \pm 0.6V$ @ 15mA max	Κ.	
		$-15V \pm 0.6V$ @ 15mA max		
	Digital G	Digital Ground $+5V \pm 0.2V$ @ 15mA max		
Controls	Two min	Two miniature bat handled switches		
	a. R	a. Remote/Local Mode Switch: Module operates under front		
	p	panel control in LOCAL position and under microprocessor		
		control in REMOTE position		
		b. GAIN UP/DOWN switch: Center off, spring loaded action.		
		equences through the seven gain ste		
		p or down actuation.	-	

Control Coding	Bit 3	Bit 2	Bit 1	Command	
	0	0	0	10^{4} V/A	
	0	0	1	10^{5} V/A	
	0	1	0	10^6 V/A	
	0	1	1	10^{7} V/A	
	1	0	0	10^{8} V/A	
	1	0	1	10^{9}V/A	
	1	1	0	10^{10} V/A	
	1	1	1	CAL	
	MSB LSB				
Gain Indicator	Eight light emitting diodes, one for each gain step				
Logic Inputs	5 Volt, Positive = true = 1, TTL compatible logic				
And Outputs	Logic $0 < 0.8V$; Logic $1 > 2.0V$ for inputs				

	$\mathbf{I} = \mathbf{I} = 0 + 0 + 1 \mathbf{V} + \mathbf{I}$		437.6	
	Logic $0 < 0.4$ V; Logic $1 > 2.4$ V for outputs			
	Positive logic; true = 1 = high			
	MOSFET Input Impedance			
	Current drive (output)			
Pin Assignments	+15V	1	13	+15V
(rear connector of	Analog Ground	2	14	Analog Ground
Preamplifier board)	-15V	3	15	-15V
	+5V	4	16	+5V
	Digital Ground	5	17	Digital Ground
	Uncommitted	6	18	Uncommitted
	Signal In	7	19	Shield Ground
	Signal Out	8	20	Shield Ground
	Bit 1	9	21	Digital Ground
	Bit 2	10	22	Digital Ground
	Bit 3	11	23	Digital Ground
	Remote/Local	12	24	Digital Ground
Gain Switching Time	10 microseconds,	max. exce	pt 10⁷ – 1	10 ⁸ transition,
	1msec. max.			
Output Polarity	Positive conventional current going into input			
	(electron loss by detector) results in positive going			
	voltage output.			
Input Protection	Anti-parallel diodes across input			
Analog Output impedance	50Ω			
Accuracy	±1%			
Output Range	± 10V			
Input Overload Detection	None			
Input/Output Signal	Single ended. BNC shells connected to analog ground			
	on the corresponding Preamplifier P.C. Board			

Construction	19" side x 3 $\frac{1}{2}$ " high x 16" deep, rack mountable with slides.	
Rear Panel		
	Contains 117Vac input module, 8 BNC analog inputs and 8 BNC	
	Analog Outputs. All BNC connectors have their shields isolated	
	from chassis.	
Order of Components	Viewed from the front:	
	Power Supply leftmost	
	Then, from left - to - right, preamplifier channels 1 through	
	8 in Ascending order.	
	Empty slot last (for microprocessor)	
Power Distribution	±15V, analog ground; +5V, digital ground bussed to analog channels	
	1-8. Separate wiring from power supply for these supply lines to the	
	Microprocessor board connector.	

VME Bus Connection	User shall provide microprocessor board, A/D, etc. Provision is made for $\pm 15V$, $\pm 5V$ power, card guides and rear "D" connector		
Temperature Range Operating	0°C to 45°C, Specifications apply $25^{\circ}C \pm 5^{\circ}C$		
Slot Size for Modules	Panel width: Board height Circuit area	 1.40 inches 2.20 inches overall 2.00 inches subtracting card guide depth 10.5 inches along length 2.0 x 10.5 = 21 square inches 	

For more information please contact:

DL INSTRUMENTS LLC 646 76 Road Brooktondale, NY 14817 USA

Phone: (607)539-1108 Email: info@dlinstruments.com

