MODEL 99539

CURRENT PREAMPLIFIER

The Model 99539 is a modular, multi (up to eight)-channel current preamplifier with parallel, logic level, gain control input. It consists of circuit boards which plug into a $31 / 2 "$ high by 19 " wide rack chassis.

Each board comprises a single preamplifier channel. Each board includes a front panel with controls to manually override the remote gain control inputs. The front panel also contains indication light emitting diodes. The 19 " rack chassis accommodates eight preamplifier channels.

It also has a ninth slot for a user-provided microprocessor which provides gain control outputs, digitizes the preamplifier outputs and communicates via the VME
bus to other system components. The 19 " rack chassis incorporates a regulated DC supply which provides power to all nine modules and detector bias potentials.

Preamplifier Module Specifications

Gain

Programmable from $10^{4} \mathrm{~V} / \mathrm{A}$ to $10^{10} \mathrm{~V} / \mathrm{A}$ in decade steps.

Bandwidth

-3 dB frequency shall be 300 Hz nominal 10^{4} to 10^{10}.
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Gain (A/V) } \\ \mathrm{G}\end{array} & \begin{array}{c}\text { Input Spectral Density } \\ \mathrm{ARMS} / \sqrt{(H z}) @ 1 \mathrm{kHz} \text { Max. } \\ \mathrm{Lf}\end{array} & \begin{array}{c}\text { Output Broadband } \\ \text { dc-1 } \mathrm{kHz} \\ \text { Volts RMS, typ. E } \mathrm{f}\end{array} \\ \text { Open Circuit }\end{array}\right]$

Input Offset Current

20pA typical @ $25^{\circ} \mathrm{C} .10^{8}-10^{10}$ only $-(20)\left(10^{-12}\right)\left(10^{10}\right)=20 \times 10^{-2}=200 \mathrm{mV} 200 \mathrm{pA}$ typical., $10^{4}-10^{7}$. Note: This parameter is dependent on the ambient humidity and temperature. If lower values are required it is important to reduce both the temperature and humidity.

Power Requirements

$+15 \mathrm{~V} \pm 0.6 \mathrm{~V}$ @ 15 mA maximum
$-15 \mathrm{~V} \pm 0.6 \mathrm{~V} @ 15 \mathrm{~mA}$ maximum
Analog Ground

$$
+5 \mathrm{~V} \pm 0.2 \mathrm{~V} @ 15 \mathrm{~mA} \text { maximum }
$$

Digital Ground

Controls

Two miniature bat handled switches
a. Remote/Local Mode Switch

Module operates under front panel control in LOCAL position and under microprocessor control in REMOTE position

b. GAIN UP/DOWN Switch

Center off, spring loaded action. Sequences through the seven gain steps on each successive up or down actuation.

Control Coding

Bit 3	Bit 2	Bit 1	Command
0	0	0	$10^{4} \mathrm{~V} / \mathrm{A}$
0	0	1	$10^{5} \mathrm{~V} / \mathrm{A}$
0	1	0	$10^{6} \mathrm{~V} / \mathrm{A}$
0	1	1	$10^{7} \mathrm{~V} / \mathrm{A}$
1	0	0	$10^{8} \mathrm{~V} / \mathrm{A}$
1	0	1	$10^{9} \mathrm{~V} / \mathrm{A}$
1	1	0	$10^{10} \mathrm{~V} / \mathrm{A}$
1	1	1	Calibration
MSB		LSB	

Gain Indicator

Eight light emitting diodes, one for each gain step.

Status Output

Single logic line to indicate LOCAL or REMOTE mode. This allows the microcontroller to know if any module is unavailable for control due to being set manually to LOCAL mode. All lines are tied together and will only indicate "high" when all switches are in the "Remote" position.

Logic Inputs and Outputs

5 Volt, positive $=$ true $=1$, TTL compatible logic
Logic $0<0.8 \mathrm{~V}$; Logic $1>2.0 \mathrm{~V}$ for inputs
Logic $0<0.4 \mathrm{~V}$; Logic $1>2.4 \mathrm{~V}$ for outputs
Positive logic; true $=1=$ high
MOSFET Input Impedance
Current drive (output)

Pin Assignments

The following are pins are on the rear connector of the preamplifier board

Shield Ground	1	13	Analog Ground
Signal Input	2	14	Analog Ground
Analog Ground	3	15	-15 V
-15 V	4	16	$\mathrm{~N} / \mathrm{C}$
N / C	5	17	+15 V
+15 V	6	18	$\mathrm{~N} / \mathrm{C}$
N / C	7	19	Shield Ground
Signal Output	8	20	$\mathrm{~N} / \mathrm{C}$
GAIN Bit 1	9	21	$\mathrm{~N} / \mathrm{C}$
Remote/Local	10	22	$\mathrm{~N} / \mathrm{C}$
GAIN Bit 2	11	23	$\mathrm{~N} / \mathrm{C}$
GAIN Enable	12	24	Gain Bit 3

Gain Switching Time

10 microseconds, maximum except $10^{7}-10^{8}$ transition, 1 msec maximum

Output Polarity

Positive conventional current into input (electron loss by detector) results in positive going voltage output.

Input Protection

Anti-parallel diodes across input

Analog Output Impedance

50 ohms

Accuracy

$\pm 1 \%$

Output Range

$\pm 10 \mathrm{Vdc}$

Input Overload Detection

None

Input/Output Signal

Single ended. BNC shells connected to analog ground on the corresponding preamplifier P. C. Board.

Construction

Modular P.C. Board with front panel and rear plug. Connector mates with chassis socket to receive power, signal and control wiring. Module is removable with the front of the $19 "$ rack chassis.

Power Supply Specifications

Analog Supply

$\pm 15 \mathrm{~V} @ 250 \mathrm{~mA}, \pm 0.6 \mathrm{~V} ; 1 \mathrm{mV}$ ripple/noise
Analog Ground

Digital Supply

$+5 \mathrm{~V} @ 1 \mathrm{~A} ; \pm 0.2 \mathrm{~V} ; 1 \mathrm{mV}$ ripple/noise
Digital Ground

Bias Supplies

51 Volt bias \# 1 @ 1mA; $\pm 3 \mathrm{~V}$; 20mV ripple/noise
Bias Ground \# 1, floating

51 Volt bias \# 2 @ $1 \mathrm{~mA} ; \pm 3 \mathrm{~V}$; 20mV ripple/noise
Bias Ground \# 2, floating

Grounding

Analog ground and digital ground tie together at the power supply via a removable jumper wire (to allow the tie point to be moved elsewhere if need be; for example, to the site of the microprocessor board A/D converter). This ground optionally may be tied to the chassis safety ground. Chassis ground connects to ac line safety ground (third wire in power cord). The two 50 V bias supplies are powered from separate transformer secondary windings. These supplies float separately from one another, with their return conductors isolated from other grounds. The shield grounds connect to analog ground at the individual channel modules.

AC Input

105 or 135 Vac ; $50-60 \mathrm{~Hz}$; single phase, 50 VA , maximum. Connection via detachable power cord and EMI/fuse module on chassis rear panel.

Front Panel

Contains the power on/off switch and pilot light.

Construction

Non-modular. The power supply is not removable from the front of the chassis and does not employ a plug - in connector. DC outputs are distributed via cables soldered to the regulator P.C. Board.

Chassis Specifications

Construction

$19 "$ side x $31 / 2 "$ high x $16^{"}$ deep, rack mountable with slides (Optional).

Rear Panel

Contains 117Vac input module, 8 BNC analog inputs and 8 BNC analog outputs. All BNC connectors have their shields isolated from the chassis (however, they are connected if Analog/Digital ground are connected to chassis).

Order of Components

Viewed from the front:
Power Supply leftmost
Then, from left - to - right, preamplifier channels 1 through 8 in ascending order.
Empty slot next (for microprocessor)

Power Supply Distribution

$\pm 15 \mathrm{~V}$, analog ground; +5 V , digital ground bussed to analog channels 1-8. Separate wiring from power supply for these supply lines to the microprocessor board connector.

VME Bus Connection

User shall provide microprocessor board, A/D, etc. Provision is made for $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ power, card guides and rear "D" connector.

Temperature Range, Operating

$0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, Specifications apply $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Slot Size for Modules

Panel width:
Board height:

Circuit Area
1.4 inches
2.20 inches overall
2.00 inches subtracting card guide depth
10.5 inches along length
$2.0 \times 10.50=21$ square inches

System Rear Panel Connector Assignments

	Designator	Function	Connector(J37)
$\begin{aligned} & \text { PREAMP } \\ & \text { CONTROL } \\ & \text { GROUP } \end{aligned}$	R/L	Remote/Local	6
	GEN0	Gain Enable, CH-1	20
	GEN1	Gain Enable, CH-2	1
	GEN2	Gain Enable, CH-3	21
	GEN3	Gain Enable, CH-4	2
	GEN4	Gain Enable, CH-5	22
	GEN5	Gain Enable, CH-6	3
	GEN6	Gain Enable, CH-7	23
	GEN7	Gain Enable, CH-8	4
	G1	Gain Bit 1	24
	G2	Gain Bit 2	5
	G3	Gain Bit 3	25
POWER	+15	Analog Supply (+)	26
	AGND	Analog Supply Return	7
	-5	Analog Supply (-)	27
	+7.5	Digital Supply (+)	8
	+7.5 RTN	Digital Supply Return	28
AUX.GROUND	AGND	Analog Ground	29
	DGND	Digital Ground	10
	DGND	Digital Ground	30
	DGND	Digital Ground	11
	DGND	Digital Ground	31
NOT USED			$\begin{gathered} \text { 37,18,19,17, } \\ \text { 34,35,9,12, } \\ \mathbf{1 3 - 1 6 , 3 2 , 3 3 , 3 6} \end{gathered}$

Summary

Gain	Programmable from $10^{4} \mathrm{~V} / \mathrm{A}$ to $10^{10} \mathrm{~V} / \mathrm{A}$ in decade steps		
Bandwidth	-3 dB frequency shall be 300 Hz nominal 10^{4} to 10^{10}		
	$\begin{aligned} & \text { Gain } \\ & \text { A/V } \\ & \text { G } \end{aligned}$	Input Spectral Density A RMS $/ \sqrt{H z}$ at 1 kHz , Max L_{f}	Output Broadband $\mathrm{DC}-1 \mathrm{kHz}$ Volts RMS, typ. E_{f} Open Circuit
	10^{4}	4×10^{-12}	1×10^{-6}
	10^{5}	6×10^{-13}	1.5×10^{-6}
	10^{6}	1.5×10^{-13}	4×10^{-6}
	10^{7}	5×10^{-14}	12×10^{-6}
	10^{8}	2×10^{-14}	50×10^{-6}
	10^{9}	2×10^{-14}	500×10^{-6}
	10^{10}	2×10^{-14}	5×10^{-3}
Input Offset Current	20pA Typ. @ $25^{\circ} \mathrm{C} .10^{8}-10^{10}$ only $-(20)\left(10^{-12}\right)\left(10^{10}\right)=$ $20 \times 10^{-2} 200 \mathrm{mV} \quad 200 \mathrm{pA}$ typ., $10^{-4}-10^{7}$		
Power Requirements	$\begin{array}{ll} \hline \text { Analog Ground } & +15 \mathrm{~V} \pm 0.6 \mathrm{~V} @ 15 \mathrm{~mA} \text { max. } \\ & -15 \mathrm{~V} \pm 0.6 \mathrm{~V} @ 15 \mathrm{~mA} \text { max } \\ \text { Digital Ground } & +5 \mathrm{~V} \pm 0.2 \mathrm{~V} @ 15 \mathrm{~mA} \text { max } \\ \hline \end{array}$		
Controls	Two miniature bat handled switches a. Remote/Local Mode Switch: Module operates under front panel control in LOCAL position and under microprocessor control in REMOTE position b. GAIN UP/DOWN switch: Center off, spring loaded action. Sequences through the seven gain steps on each successive up or down actuation.		

Control Coding	$\begin{gathered} \hline \text { Bit } 3 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \text { MSB } \end{gathered}$	Bit 2 0 0 1 1 0 0 1 1	Bit 1 0 1 0 1 0 1 0 1 LSB	Command $10^{4} \mathrm{~V} / \mathrm{A}$ $10^{5} \mathrm{~V} / \mathrm{A}$ $10^{6} \mathrm{~V} / \mathrm{A}$ $10^{7} \mathrm{~V} / \mathrm{A}$ $10^{8} \mathrm{~V} / \mathrm{A}$ $10^{9} \mathrm{~V} / \mathrm{A}$ $10^{10} \mathrm{~V} / \mathrm{A}$ CAL
Gain Indicator	Eight light emitting diodes, one for each gain step			
Logic Inputs And Outputs	5 Volt, Positive $=$ true $=1$, TTL compatible logic Logic $0<0.8 \mathrm{~V}$; Logic $1>2.0 \mathrm{~V}$ for inputs			

	Logic $0<0.4 \mathrm{~V}$; Logic $1>2.4 \mathrm{~V}$ for outputs Positive logic; true $=1=$ high MOSFET Input Impedance Current drive (output)			
Pin Assignments	$+15 \mathrm{~V}$	1	13	+15V
(rear connector of	Analog Ground	2	14	Analog Ground
Preamplifier board)	$-15 \mathrm{~V}$	3	15	-15V
	$+5 \mathrm{~V}$	4	16	$+5 \mathrm{~V}$
	Digital Ground	5	17	Digital Ground
	Uncommitted	6	18	Uncommitted
	Signal In	7	19	Shield Ground
	Signal Out	8	20	Shield Ground
	Bit 1	9	21	Digital Ground
	Bit 2	10	22	Digital Ground
	Bit 3	11	23	Digital Ground
	Remote/Local	12	24	Digital Ground
Gain Switching Time	10 microsecond 1 msec. max.	\max	10^{7}	transition,
Output Polarity	Positive conven (electron loss by voltage output.	nal etec	oing Its in	o input sitive going
Input Protection	Anti-parallel dio	ac		
Analog Output impedance	50Ω			
Accuracy	$\pm 1 \%$			
Output Range	$\pm 10 \mathrm{~V}$			
Input Overload Detection	None			
Input/Output Signal	Single ended. B on the correspon	$\begin{aligned} & \mathrm{C} \text { sh } \\ & \text { ing } \end{aligned}$	ected	analog ground Board

Construction Rear Panel	$19 "$ side x $31 / 2 "$ high x 16" deep, rack mountable with slides.
Contains 117Vac input module, 8 BNC analog inputs and 8 BNC	
Analog Outputs. All BNC connectors have their shields isolated	
from chassis.	

VME Bus Connection	User shall provide microprocessor board, A/D, etc. Provision is made for $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ power, card guides and rear " D " connector
Temperature Range Operating	$0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, Specifications apply $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Slot Size for Modules	Panel width: 1.40 inches Board height 2.20 inches overall 2.00 inches subtracting card guide depth Circuit area 10.5 inches along length $2.0 \times 10.5=21$ square inches

For more information please contact:

DL INSTRUMENTS LLC

64676 Road
Brooktondale, NY 14817
USA

Phone: (607)539-1108

Q Instruments
www.dlinstruments.com

Email: info@dlinstruments.com

